

Piperpal and the <location> Content Tag

Version 2

Ole Aamot

ole@aamotsoftware.com

https://piperpal.com/

mailto:ole@aamotsoftware.com
https://piperpal.com/

Background

I’m a Norwegian native currently staying in Palo Alto.

I have worked on piperpal.com for the last 2 weeks and

the concept of the <location> Content Tag for 4 years.

I quit my day job to implement Piperpal in August 2015

and I went to Palo Alto, California to meet with Peter

Norvig, Director of Research, Google, Inc. to discuss

a new possible <location> Content Tag on piperpal.com.

Norvig is very positive to the concept of

crowd-sourced location data entry with a location tag

for content and the idea of building my new website

such as Piperpal as a prototype for location-based

search using the formula known as Haversine.

He said that Google may implement it too, but it would

be based on the Geo strategy at Google and implemented

in the terms of Google’s infrastructure.

In 3 years I have built piperpal.com, a web site where

you can add content based on the geographical position

of your web browser and pay using the stripe.com APIs.

On piperpal.com you can search for data based on text

queries, with autocomplete of existing entries, in a

radius in the range of 0 - 10000 km from your current

location.

A <location> tag for location-based markup

I am introducing the new <location> tag and
&<location> syntax for document markup of
location-based content in HTML by creating the Data

Type Definition published on

http://github.com/location

The new tag will make it easier for content providers

to state that the HTML content they are publishing is

geographically positioned and meant for indexing and

displaying on services like Google Maps / Google Now.

The motivation behind this work is new location-based

content retrieval, and would open a range of new ways

to advertise geographically within a given radius and

time interval.

Example: &concert

Consider a classical concert at The Greek Theater.

The location tag is &concert .

<!DOCTYPE location SYSTEM
“https://raw.githubusercontent.com/location/location/m

aster/location-1.3.dtd”>

< location name=” concert ” data=” The Greek Theater ”
link=” http://www.ticketmaster.com/ ” glat=” 37.873596 ”
glon=” -122.25443 ” radius=” 10000 ”
notBefore=” 2017-12-31T22:00 ”
notAfter=” 2018-01-01T00:00 ” paid=” 50 ”/>

http://github.com/location

JavaScript API for Location on piperpal.com

I built an API for location-based index on

piperpal.com.

Example Site: https://piperpal.com/paloalto.html

<script type="text/javascript"

src=" https://api.piperpal.com/location/json.php?service
=Search&glat=37.4375596&glon=-122.11922789999998"></scr
ipt>

<script language="JavaScript">

var obj = JSON.parse(locations);
document.write(obj. locations[0]. distance + " " +
obj. locations[0]. name + " " + obj. locations[0]. location
+ " " + obj. locations[0]. service + " " + "
\n");
document.write(obj. locations[1]. distance + " " +
obj. locations[1]. name + " " + obj. locations[1]. location
+ " " + obj. locations[1]. service + " "+ "
\n");
</script>

Result of Location API Search:

Location Tags in Palo Alto, CA

3.2512275632216996 GoogleVisitorCenter
http://www.google.com/ Search

3.259510067275075 Google Visitor Center
http://www.google.com/ Search

https://piperpal.com/paloalto.html

Piperpal: Location-aware Content markup

My idea is that the content on a website is marked up

according to a location tag and that this tag decides

which content that is meant to be indexed and eligble

for placing a ad on. The content producers would tag

their content with location tags, advertisers mark up

their catalog with location-aware radius ads, and the

users can embed the ads in their posts with a new

location tag syntax such as &concert that could be
implemented for Google services such as Gmail and

Google+.

Pseudo code for logic of search for nearby matches

if (notBefore < NOW() < notAfter || ((&UserLoc -

radius) < (geo) < (&UserLoc + radius)) → display

Piperpal is the first site that I am implementing for

making a resource for location-based tags.

On https://piperpal.com/ I added a form that lets the
user insert the Name, Location, and Service parameter

and pay by credit card (via Stripe) to add the entry.

The mapping between the content produced by a content

provider, the ad by the advertiser and the tagging by

individual user is done on www.piperpal.com/<location>
where the location tag example for <location> would be
& concert and the URI would be www.piperpal.com/concert

https://piperpal.com/

Actual implementation

CREATE TABLE piperpal (

 id MEDIUMINT(8) UNSIGNED NOT NULL AUTO_INCREMENT,

 name VARCHAR(100) NOT NULL DEFAULT '',

 service VARCHAR(1024) NOT NULL,

 location VARCHAR(1024) NOT NULL,

 modified TIMESTAMP NOT NULL DEFAULT

 CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

 created TIMESTAMP NULL DEFAULT NULL,

 glat DECIMAL(10, 8) NOT NULL,

 glon DECIMAL(11, 8) NOT NULL,

 paid MEDIUMINT(16) UNSIGNED NOT NULL,

 token VARCHAR(32) NOT NULL,

 type VARCHAR(32) NOT NULL,

 email VARCHAR(256) NOT NULL,

 PRIMARY KEY (id));

);

Apache mapping: https://piperpal.com/concert

RewriteEngine On

RewriteRule ^([\sa-åA-Å0-9]+)$ /api/ [L]

jQuery representation of “https://piperpal.com/concert”

Piperpal provides a jQuery function for variables in a

the list of all location entries for a given location

tag nearby a geographical position for the device.

This jQuery function can then be used by third-party

developers who want to show all entries for a given

location-based tag entry accepted on piperpal.com.

https://piperpal.com/concert

Piperpal Location jQuery API

The API will query the user’s link location and

geoposition through the AJAX script and present

a user with content in the nearest geographical

approximity according to the Haversine formula.

 <div id="log"></div>

 <script>

 $(document).ready(function(){

setInterval(function(){

 if (navigator.geolocation) {

navigator.geolocation.getCurrentPosition(ajaxCall);

 } else{

$('#log').html("GPS is not available");

 }

 function ajaxCall(position){

 var latitude = position.coords.latitude;

 var longitude = position.coords.longitude;

 var location = window.location.pathname.substr(1);

 $.ajax({

 url: "/api/pull.php",

 type: 'POST', //I want a type as POST

 data: {'latitude': latitude, 'longitude' : longitude,

 'location' : location },

 success: function(response) {

 $('#log').html(response);

 }

});

 }

 },1500);

 });

 </script>

Formula for computing a Haversine distance

The distance along the surface of the (spherical)

Earth between two arbitrary points, in degrees, is

determined by the Spherical Cosine Law, also known as

the Haversine Formula. We use this law to compute the

nearest entries on piperpal.com measured from the

user’s geolocation.

SELECT DISTINCT

id,name,service,location,modified,created,glat,glon,pa

id,token,type,email,111.045*DEGREES(ACOS(COS(RADIANS(l

atpoint))*COS(RADIANS(glat))*COS(RADIANS(longpoint)-RA

DIANS(glon))+SIN(RADIANS(latpoint))*SIN(RADIANS(glat

)))) AS distance_in_km FROM piperpal JOIN (SELECT " .

$_POST['latitude'] . " AS latpoint, " .

$_POST['longitude'] . " AS longpoint) AS p ON 1=1

WHERE name = '" . $_POST['location'] . "' ORDER BY

distance_in_km;

The Piperpal Location JSON function is on

https://api.piperpal.com/location/json.php?service=Sear

ch&glat=37.44&glon=-122.12

var locations = '{ "locations" : [' + '{"id": "2", "name":

"GoogleVisitorCenter", "service": "Search", "location":

"http://www.google.com/", "modified": "2018-03-16 02:23:31", "created":

"2015-08-27 16:29:49", "glat": "37.42281050", "glon": "-122.08737760", "paid":

"1", "token": "tok_16eTG3AZBHUS3EAZUcuZKov5", "type": "card", "distance":

"3.452303131168993", "email": "oka@oka.no"},{"id": "1", "name": "Google Visitor

Center", "service": "Search", "location": "http://www.google.com/", "modified":

"2018-03-16 02:23:28", "created": "2015-08-27 16:27:16", "glat": "37.42242580",

"glon": "-122.08755550", "paid": "1", "token": "tok_16eTDaAZBHUS3EAZZJ4MCZFK",

"type": "card", "distance": "3.463140792214949", "email": "oka@oka.no"}]}';

https://api.piperpal.com/location/json.php?service=Search&glat=37.44&glon=-122.12
https://api.piperpal.com/location/json.php?service=Search&glat=37.44&glon=-122.12

Future Piperpal work

Convolutional Neural Net to group the nearby points.

Plan to do lookups with a Convolution Neural Network

[CNN] using a matrix with all of the entries within a

radius away from the user’s location for a given time

as computed by a convolution matrix for the longitude

and latitude.

NN (lat, on) C l = (lat) lat , (lon) lon[∫
90

−90
F G(v)e dv[2πivlat−lat′] d ′ ∫

180

−180
F G(v)e dv[2πivlon−lon′] d ′]

Actual implementation will differ from the equation.

References

[CNN] Amani V. Peddada, James Hong: Geo-Location

Estimation with Convolutional Neural Networks

http://cs231n.stanford.edu/reports/CS231N_Final_Report

_amanivp_jamesh93.pdf

http://cs231n.stanford.edu/reports/CS231N_Final_Report_amanivp_jamesh93.pdf
http://cs231n.stanford.edu/reports/CS231N_Final_Report_amanivp_jamesh93.pdf

